Subspace Mapping of Noisy Text Documents
نویسندگان
چکیده
Subspace mapping methods aim at projecting high-dimensional data into a subspace where a specific objective function is optimized. Such dimension reduction allows the removal of collinear and irrelevant variables for creating informative visualizations and task-related data spaces. These specific and generally de-noised subspaces spaces enable machine learning methods to work more efficiently. We present a new and general subspace mapping method, Correlative Matrix Mapping (CMM), and evaluate its abilities for category-driven text organization by assessing neighborhood preservation, class coherence, and classification. This approach is evaluated for the challenging task of processing short and noisy documents.
منابع مشابه
A Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملSpeech Enhancement Through an Optimized Subspace Division Technique
The speech enhancement techniques are often employed to improve the quality and intelligibility of the noisy speech signals. This paper discusses a novel technique for speech enhancement which is based on Singular Value Decomposition. This implementation utilizes a Genetic Algorithm based optimization method for reducing the effects of environmental noises from the singular vectors as well as t...
متن کاملLocal Semantic Kernels for Text Document Clustering
Document clustering is a fundamental task of text mining, by which efficient organization, navigation, summarization and retrieval of documents can be achieved. The clustering of documents presents difficult challenges due to the sparsity and the high dimensionality of text data, and to the complex semantics of the natural language. Subspace clustering is an extension of traditional clustering ...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملSelf-Organization of Distributed Document Archives
Document archives may be regarded as a perfect application arena for unsupervised neural networks because many operations computers have to perform on text documents are classiication tasks based on noisy patterns. The \noise" originates from the known inaccuracy of mapping free-form natural language to an indexing vocabulary representing the contents of the documents. In this paper we describe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011